
Eagle: Tcl Implementation in C#
Lang.NET 2009 Symposium - April 16th, 2009

Joe Mistachkin <joe@mistachkin.com>

What is Tcl?

• Tcl (Tool Command Language) is an open-
source scripting language created by John
Ousterhout in 1988.

• Designed to be highly extensible and easily
embeddable.

• Is it relatively “typeless”, has minimal syntax,
no fixed grammar, and no keywords.

Who uses Tcl/Tk?
• AOL
• ActiveState
• BAE Systems
• BMW
• BitMover
• Boeing
• Broadcom
• Cisco
• DaimlerChrysler
• EDS
• Eolas Technologies
• F5 Networks
• HP
• IBM
• Intel
• Lucent
• Mentor Graphics
• Microsoft (?)

• Motorola
• NASA (JPL and others)
• NBC
• NIST
• National Instruments
• Northrop Grumman
• Oracle
• Pixar
• Python
• QUALCOMM
• Raytheon
• Sun Microsystems
• Synopsys
• Texas Instruments
• TiVo
• US Department of Defense
• US Postal Service
• ...

What is Eagle?

What is Eagle?

• Eagle (Extensible Adaptable Generalized Logic
Engine) is an open-source implementation of the Tcl
scripting language written in C# for the CLR.

• Designed to be highly extensible and easily
embeddable.

• Is it relatively “typeless”, has minimal syntax, no
fixed grammar, and no keywords.

Notable Features
• Dynamic language, loosely coupled with full introspection.
• Uses “duck typing” (like Tcl).
• Supports Unicode (obviously?).
• Integrates with CLR classes.
• Integrates with native libraries.
• Integrates with Tcl/Tk.
• Supports interactive debugging.
• Supports script cancellation.
• Supports read-only variables, commands, etc.
• Supports interpreter-wide variable tracing.
• Supports anonymous procedures and closures.
• Unified unit testing framework.

– Capable of running tests in Tcl and Eagle.

Notable Features
(cont.)

• Supports custom commands (more on this later).
– Commands may be added, renamed, or removed at any time and can be

implemented in any managed language.
• Supports custom math functions.

– For use with the expression parser (e.g. the expr command).
• Supports binary plugins (i.e. groups of commands).

– The default plugin provides all the necessary boilerplate code to
integrate with Eagle; however, plugins are free to override any default
behaviors.

• Supports versioned “packages” which may refer to a binary
plugin or a “pure script” package (as in Tcl).

• Supports “hidden” commands.
– Preliminary support has been added for “safe” interpreter support and

custom command execution policies written in managed code.

Syntax: Grouping
(evaluation, step #1)

set x 1

puts "grouping with quotes, x = $x"

puts {grouping with braces, x = $x}

proc grouping { args } {
return [info level [info level]]

}

puts [grouping with brackets, x = $x]

Syntax: Substitution
(evaluation, step #2)

set name Joe; puts "Hello, $name"

puts [clock format [clock seconds]]

puts "\u2554\u2550\u2557\n\u2551\↩
 ↪\u2551\n\u255A\u2550\u255D"

Friendly Errors

% set
Error, line 1: wrong # args: should
be "set varName ?newValue?"

% scope foo
Error, line 1: bad option "foo": must
be close, create, current, destroy,
eval, exists, list, open, set,
unset, or vars

CLR Usage Example
(automation)

proc threadStart { args } {
set ::result $args; # do work here...

}

object import System.Threading

set t [object create -alias –parametertypes \
ParameterizedThreadStart Thread threadStart]

$t Start foo; $t Join; unset t

$::result ToString

Native Library Example
(more automation)

set x [library declare –functionname \
GetConsoleWindow -returntype IntPtr \
-module [library load kernel32.dll]]

set hwnd [library call $x]

Tcl/Tk Example
(integration)

if {![tcl ready]} then {tcl load}

set interp [tcl create]

tcl eval $interp {eagle debug break}; # type "#go"

tcl unload

Custom Commands

• Together with minimal syntax, these are great
for creating application-centric domain
specific languages (DSL).

• Show example…

Interactive Debugging

• Single-step mode, breakpoints, and variable
watches.

• Examine and modify interpreter state.
• Supports isolated evaluation.
• Scripting support via the debug command.

Interactive Debugging
(cont.)

• Uses a read-eval-print loop (REPL).
• Debugging “meta-commands” are prefixed with “#”

(the Tcl comment character) having special meaning
(i.e. they work) only when entered interactively.

• The #help meta-command may be used [by itself] to
display the list of available meta-commands or with
the syntax #help <name> to display usage
information for a particular meta-command (e.g.
#help #vinfo).

• Not yet integrated with Visual Studio.

Script Cancellation
(oddly similar to TIP #285, see http://tip.tcl.tk/285)

• Safely cancels a script being evaluated,
synchronously or asynchronously.

• Example #1 (from C#):

Engine.CancelEvaluate(interpreter,
true, null, ref result);

• Example #2 (from a script):

interp cancel –unwind

Variable Tracing

• Allows user-defined callback(s) to be executed
when a variable is read, written, or deleted.
– Currently, trace callbacks for a variable can only

be specified upon variable creation (via the
SetVariableValue or AddVariable APIs).

• Interpreter-wide variable traces are also
supported.
– They can monitor, modify, or cancel all requests to

read, write, and delete any variable in the
interpreter.

Anonymous Procedures
(compatible with Tcl 8.5)

set sum [list [list args] {
expr [list [join $args +]]

}]

apply $sum 1 2 3; # returns 6

Closures
(using apply and scope)

set sum [list [list name args] {
scope create -open -args $name

if {![info exists sum]} then {
set sum 0

}

if {[llength $args] > 0} then {
incr sum [expr [list [join $args +]]]

}
}]

apply $sum foo 1 2 3; # returns 6

Design Philosophy
• Tcl heavily influenced the design of Eagle. In

particular:
– It obeys the “Endekalogue” (i.e. the “11 rules” that make

up the Tcl 8.4 syntax).
– Everything is a string (EIAS).
– Every command is a string; the first word is the name of

the command and the rest are arguments to the command.
– Commands are free to interpret their arguments however

they wish.
– Every list is a string; however, not every string is a “well-

formed” list.
– The language supplies primitives that can be combined in

useful ways.

Design Philosophy
(cont.)

• However, there are some differences in the design
that reflect the differences in the underlying
platforms:
– Minimal per-thread data; most state is stored in the

interpreter.
• Interpreters may be used from any thread and/or from multiple

threads simultaneously (i.e. they have no thread affinity).
• Each thread does have its own call stack and current call frame;

however, the global call frame is shared between all threads.
– No interpreter-wide result (i.e. the result of the last

evaluation, etc).
• This merits special attention because it significantly reduces the

coupling between components.

What is missing?
(from the Tcl/Tk perspective)

• No Tk commands.
• No argument expansion syntax (introduced in Tcl 8.5).
• No namespace support.
• No asynchronous input/output.
• No slave interpreters, no aliases, and no “Safe Tcl” (explain).
• No binary, fblocked, fcopy, fileevent, format, glob, history, memory,

scan, or trace commands.
• No http or msgcat packages.
• No registry or dde packages.
• Minimal support for the tcltest package (just enough to run the test suite).
• For the open command, command pipelines and serial ports are not

supported.
• For the exec command, Unix-style input/output redirection and command

pipelines are not supported.

Performance
(from the Tcl/Tk perspective)

• For some operations, Eagle can be up to up to
two orders of magnitude slower than “real”
Tcl.

• This is to be expected because Tcl is written in
highly optimized C, has a mature byte-code
compiler, and [most importantly] caches the
computed internal representations of lists,
integers, etc.

Demonstration

Questions and Answers

Where is it?

http://eagle.to/

http://eagle.to/

	Eagle: Tcl Implementation in C#
	What is Tcl?
	Who uses Tcl/Tk?
	What is Eagle?
	What is Eagle?
	Notable Features
	Notable Features�(cont.)
	Syntax: Grouping�(evaluation, step #1)
	Syntax: Substitution�(evaluation, step #2)
	Friendly Errors
	CLR Usage Example�(automation)
	Native Library Example�(more automation)
	Tcl/Tk Example�(integration)
	Custom Commands
	Interactive Debugging
	Interactive Debugging�(cont.)
	Script Cancellation�(oddly similar to TIP #285, see http://tip.tcl.tk/285)
	Variable Tracing
	Anonymous Procedures�(compatible with Tcl 8.5)
	Closures�(using apply and scope)
	Design Philosophy
	Design Philosophy�(cont.)
	What is missing?�(from the Tcl/Tk perspective)
	Performance�(from the Tcl/Tk perspective)
	Demonstration
	Questions and Answers
	Where is it?

