Eagle: Tcl Implementation in C#

Lang.NET 2009 Symposium - April 161, 2009
Joe Mistachkin <joe@mistachkin.com>

What i1s Tcl?

e Tcl (Tool Command Language) Is an open-

source scripting language created by John
Ousterhout in 1988.

e Designed to be highly extensible and easily
embeddable.

 |Is it relatively “typeless”, has minimal syntax,
no fixed grammar, and no keywords.

AOL
ActiveState
BAE Systems
BMW

BitMover
Boeing
Broadcom

Cisco
DaimlerChrysler
EDS

Eolas Technologies
F5 Networks

HP

IBM

Intel

Lucent

Mentor Graphics
Microsoft (?)

Who uses Tcl/Tk?

Motorola

NASA (JPL and others)
NBC

NIST

National Instruments
Northrop Grumman
Oracle

Pixar

Python

QUALCOMM
Raytheon

Sun Microsystems
Synopsys

Texas Instruments
TiVo

US Department of Defense
US Postal Service

What is Eagle?

What is Eagle?

e Eagle (Extensible Adaptable Generalized Logic
Engine) Is an open-source implementation of the Tcl
scripting language written in C# for the CLR.

e Designed to be highly extensible and easily
embeddable.

e |[s it relatively “typeless”, has minimal syntax, no
fixed grammar, and no keywords.

Notable Features

Dynamic language, loosely coupled with full introspection.
Uses “duck typing” (like Tcl).

Supports Unicode (obviously?).

Integrates with CLR classes.

Integrates with native libraries.

Integrates with Tcl/Tk.

Supports interactive debugging.

Supports script cancellation.

Supports read-only variables, commands, etc.
Supports interpreter-wide variable tracing.
Supports anonymous procedures and closures.

Unified unit testing framework.
— Capable of running tests in Tcl and Eagle.

Notable Features
(cont.)

Supports custom commands (more on this later).

— Commands may be added, renamed, or removed at any time and can be
Implemented in any managed language.

Supports custom math functions.
— For use with the expression parser (e.g. the expr command).

Supports binary plugins (i.e. groups of commands).

— The default plugin provides all the necessary boilerplate code to
Integrate with Eagle; however, plugins are free to override any default
behaviors.

Supports versioned “packages” which may refer to a binary
plugin or a “pure script” package (as in Tcl).

Supports “hidden” commands.

— Preliminary support has been added for “safe” interpreter support and
custom command execution policies written in managed code.

Syntax: Grouping

(evaluation, step #1)
set 1

puts ‘"‘'grouping with quotes, X = $x"
puts {grouping with braces, x = $x}
o] gole { args } {

return [iInfo level [iInfo level]]

}

puts [grouping with brackets, x = $x]

Syntax: Substitution

(evaluation, step #2)

set name Joe; puts ""Hello, $name"
puts J|clock format |[clock seconds]]

puts ""\u2554\u2550\u2557\n\u2551\«<
= \U2551\N\u255A\u2550\u255D"

% set

Error, line 1: wrong # args: should
be "'set varName ?”newValue?"

% scope foo

Error, line 1: bad option "foo": must
be close, create, current, destroy,
eval, exists, list, open, set,
unset, or vars

CLR Usage Example

(automation)

proc threadStart { args } {
set ::result $args; # do work here...

}

object 1mport System.Threading

set t [object create -alias —parametertypes \
ParameterizedThreadStart Thread threadStart]

$t Start foo; $t Join; unset t

$::result ToString

Native Library Example

(more automation)

set X [library declare —functionname \
GetConsoleWindow -returntype IntPtr \
-modulle [library load kernel32.dll]]

set hwnd [library call $x]

Tcl/Tk Example

(integration)

iIf {1[tcl ready]} then {tcl load}
set Interp [tcl create]
tcl eval $interp {eagle debug break}; # type "#go"

tcl unload

Custom Commands

Together with minimal syntax, these are great
for creating application-centric domain
specific languages (DSL).

Show example...

Interactive Debugging

Single-step mode, breakpoints, and variable
watches.

Examine and modify interpreter state.
Supports isolated evaluation.
Scripting support via the debug command.

Interactive Debugging
(cont.)

Uses a read-eval-print loop (REPL).

Debugging “meta-commands” are prefixed with “#”
(the Tcl comment character) having special meaning
(i.e. they work) only when entered interactively.

The #help meta-command may be used [by itself] to
display the list of available meta-commands or with
the syntax #help <name> to display usage
Information for a particular meta-command (e.g.
#help #vinfo).

Not yet integrated with Visual Studio.

Script Cancellation
(oddly similar to TIP #285, see http://tip.tcl.tk/285)

» Safely cancels a script being evaluated,
synchronously or asynchronously.

o Example #1 (from C#):

Engine.CancelEvaluate(interpreter,
true, null, ref result);

o Example #2 (from a script):

interp cancel —unwind

Variable Tracing

* Allows user-defined callback(s) to be executed
when a variable Is read, written, or deleted.
— Currently, trace callbacks for a variable can only

be specified upon variable creation (via the
SetVariableValue or AddVariable APIs).

* Interpreter-wide variable traces are also
supported.
— They can monitor, modify, or cancel all requests to

read, write, and delete any variable in the
Interpreter.

Anonymous Procedures
(compatible with Tcl 8.5)

set sum [list [list args] {
expr [list [join $args +]]
4]

apply $sum 1 2 3; # returns 6

Closures
(using apply and scope)

set sum [list [list name args] {
scope create -open -args $name

iIT {![iInfo exists sum]} then {
set sum O

}

1T {[1length $args] > 0} then {
incr sum [expr [list [jJoin $args +]1]
+
1]

apply $sum foo 1 2 3; # returns 6

Design Philosophy

 Tcl heavily influenced the design of Eagle. In
particular:

— It obeys the “Endekalogue” (i.e. the “11 rules” that make
up the Tcl 8.4 syntax).

— Everything is a string (EIAS).

— Every command is a string; the first word is the name of
the command and the rest are arguments to the command.

— Commands are free to interpret their arguments however
they wish.

— Every list Is a string; however, not every string Is a “well-
formed” list.

— The language supplies primitives that can be combined in
useful ways.

Design Philosophy

(cont.)

» However, there are some differences in the design
that reflect the differences in the underlying
platforms:

— Minimal per-thread data; most state Is stored in the
interpreter.

o Interpreters may be used from any thread and/or from multiple
threads simultaneously (i.e. they have no thread affinity).

» Each thread does have its own call stack and current call frame;
however, the global call frame is shared between all threads.
— No Interpreter-wide result (i.e. the result of the last
evaluation, etc).

* This merits special attention because it significantly reduces the
coupling between components.

What Is missing?
(from the Tcl/Tk perspective)

No Tk commands.

No argument expansion syntax (introduced in Tcl 8.5).

No namespace support.

No asynchronous input/output.

No slave interpreters, no aliases, and no “Safe Tcl” (explain).

No binary, fblocked, fcopy, fileevent, format, glob, history, memory,
scan, or trace commands.

No http or msgcat packages.
No registry or dde packages.
Minimal support for the tcltest package (just enough to run the test suite).

For the open command, command pipelines and serial ports are not
supported.

For the exec command, Unix-style input/output redirection and command
pipelines are not supported.

Performance
(from the Tcl/Tk perspective)

* For some operations, Eagle can be up to up to

two orders of magnitude slower than “real”
Tcl.

e This Is to be expected because Tcl Is written In
highly optimized C, has a mature byte-code
compiler, and [most importantly] caches the

computed internal representations of lists,
Integers, etc.

Demonstration

Questions and Answers

Where Is it?

http://eagle.to/

http://eagle.to/

	Eagle: Tcl Implementation in C#
	What is Tcl?
	Who uses Tcl/Tk?
	What is Eagle?
	What is Eagle?
	Notable Features
	Notable Features�(cont.)
	Syntax: Grouping�(evaluation, step #1)
	Syntax: Substitution�(evaluation, step #2)
	Friendly Errors
	CLR Usage Example�(automation)
	Native Library Example�(more automation)
	Tcl/Tk Example�(integration)
	Custom Commands
	Interactive Debugging
	Interactive Debugging�(cont.)
	Script Cancellation�(oddly similar to TIP #285, see http://tip.tcl.tk/285)
	Variable Tracing
	Anonymous Procedures�(compatible with Tcl 8.5)
	Closures�(using apply and scope)
	Design Philosophy
	Design Philosophy�(cont.)
	What is missing?�(from the Tcl/Tk perspective)
	Performance�(from the Tcl/Tk perspective)
	Demonstration
	Questions and Answers
	Where is it?

